Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Infect Dis ; 131: 46-49, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2261594

ABSTRACT

OBJECTIVES: To evaluate the impact of early implementation of public health and social measures (PHSMs) on contact rates over time and explore contact behavior of asymptomatic versus symptomatic cases. METHODS: We used the largest contact tracing data in China thus far to estimate the mean contacts over time by age groups and contact settings. We used bootstrap with replacement to quantify the uncertainty of contact matrixes. The Pearson correlation was performed to demonstrate the number of contacts over time in relation to the evolution of restrictions. In addition, we analyzed the index cases with a high number of contacts and index cases that produced a high number of secondary cases. RESULTS: Rapidly adapted PHSMs can reduce the mean contact rates in public places while increasing the mean contact rates within households. The mean contact rates were 11.81 (95% confidence interval, 11.61-12.01) for asymptomatic (at the time of investigation) cases and 6.70 (95% confidence interval, 6.54-6.87) for symptomatic cases. The percentage of asymptomatic cases (at the time of investigation) meeting >50 close contacts make up more than 65% of the overall cases. The percentage of asymptomatic cases producing >10 secondary cases account for more than 80% of the overall cases. CONCLUSION: PHSMs may increase the contacts within the household, necessitating the need for pertinent prevention strategies at home. Asymptomatic cases can contribute significantly to Omicron transmission. By making asymptomatic people aware that they are already contagious, hence limiting their social contacts, it is possible to lower the transmission risk.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Public Health , Contact Tracing , Disease Outbreaks , China/epidemiology
4.
Int J Infect Dis ; 134: 78-87, 2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2220802

ABSTRACT

OBJECTIVES: The Omicron BA.2 variant is probably the main epidemic strain worldwide at present. Comparing the epidemiological characteristics, transmissibility, and influencing factors of SARS-CoV-2, the results obtained in this paper will help to provide theoretical support for disease control. METHODS: This study was a historical information analysis, using the R programming language and SPSS 24.0 for statistical analysis. The Geoda and Arc GIS were used for spatial autocorrelation analysis. RESULTS: Local spatial autocorrelations of the incidence rate were observed in Delta and Omicron BA.1 outbreaks, whereas Omicron BA.2 outbreaks showed a random distribution in incidence rate. The time-dependent reproduction number of Delta, Omicron BA.1, and Omicron BA.2 were 3.21, 4.29, and 2.96, respectively, and correspondingly, the mean serial interval were 4.29 days (95% confidence interval [CI]: 0.37-8.21), 3.84 days (95% CI: 0-8.37), and 2.77 days (95% CI: 0-5.83). The asymptomatic infection rate of cases in Delta, Omicron BA.1, and Omicron BA.2 outbreaks were 21.71%, 6.25%, and 4.35%, respectively. CONCLUSION: The Omicron BA.2 variant had the greatest serial interval, transmissibility, and transmission speed, followed by BA.1, and then Delta. Compared with Delta and Omicron BA.1 variants, the Omicron BA.2 variant may be less pathogenic and more difficult to control than Omicron BA.1 and Delta.

5.
Frontiers in public health ; 10, 2022.
Article in English | EuropePMC | ID: covidwho-2046310

ABSTRACT

Background The epidemiological characteristics and transmissibility of Coronavirus Disease 2019 (COVID-19) may undergo changes due to the mutation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) strains. The purpose of this study is to compare the differences in the outbreaks of the different strains with regards to aspects such as epidemiological characteristics, transmissibility, and difficulties in prevention and control. Methods COVID-19 data from outbreaks of pre-Delta strains, the Delta variant and Omicron variant, were obtained from the Chinese Center for Disease Control and Prevention (CDC). Case data were collected from China's direct-reporting system, and the data concerning outbreaks were collected by on-site epidemiological investigators and collated by the authors of this paper. Indicators such as the effective reproduction number (Reff), time-dependent reproduction number (Rt), rate of decrease in transmissibility (RDT), and duration from the illness onset date to the diagnosed date (DID)/reported date (DIR) were used to compare differences in transmissibility between pre-Delta strains, Delta variants and Omicron variants. Non-parametric tests (namely the Kruskal-Wallis H and Mean-Whitney U tests) were used to compare differences in epidemiological characteristics and transmissibility between outbreaks of different strains. P < 0.05 indicated that the difference was statistically significant. Results Mainland China has maintained a “dynamic zero-out strategy” since the first case was reported, and clusters of outbreaks have occurred intermittently. The strains causing outbreaks in mainland China have gone through three stages: the outbreak of pre-Delta strains, the outbreak of the Delta variant, and outbreaks involving the superposition of Delta and Omicron variant strains. Each outbreak of pre-Delta strains went through two stages: a rising stage and a falling stage, Each outbreak of the Delta variant and Omicron variant went through three stages: a rising stage, a platform stage and a falling stage. The maximum Reff value of Omicron variant outbreaks was highest (median: 6.7;ranged from 5.3 to 8.0) and the differences were statistically significant. The RDT value of outbreaks involving pre-Delta strains was smallest (median: 91.4%;[IQR]: 87.30–94.27%), and the differences were statistically significant. The DID and DIR for all strains was mostly in a range of 0–2 days, with more than 75%. The range of duration for outbreaks of pre-Delta strains was the largest (median: 20 days, ranging from 1 to 61 days), and the differences were statistically significant. Conclusion With the evolution of the virus, the transmissibility of the variants has increased. The transmissibility of the Omicron variant is higher than that of both the pre-Delta strains and the Delta variant, and is more difficult to suppress. These findings provide us with get a more clear and precise picture of the transmissibility of the different variants in the real world, in accordance with the findings of previous studies. Reff is more suitable than Rt for assessing the transmissibility of the disease during an epidemic outbreak.

6.
Front Public Health ; 9: 799536, 2021.
Article in English | MEDLINE | ID: covidwho-1674410

ABSTRACT

Background: To date, there is a lack of sufficient evidence on the type of clusters in which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is most likely to spread. Notably, the differences between cluster-level and population-level outbreaks in epidemiological characteristics and transmissibility remain unclear. Identifying the characteristics of these two levels, including epidemiology and transmission dynamics, allows us to develop better surveillance and control strategies following the current removal of suppression measures in China. Methods: We described the epidemiological characteristics of SARS-CoV-2 and calculated its transmissibility by taking a Chinese city as an example. We used descriptive analysis to characterize epidemiological features for coronavirus disease 2019 (COVID-19) incidence database from 1 Jan 2020 to 2 March 2020 in Chaoyang District, Beijing City, China. The susceptible-exposed-infected-asymptomatic-recovered (SEIAR) model was fitted with the dataset, and the effective reproduction number (Reff ) was calculated as the transmissibility of a single population. Also, the basic reproduction number (R0) was calculated by definition for three clusters, such as household, factory and community, as the transmissibility of subgroups. Results: The epidemic curve in Chaoyang District was divided into three stages. We included nine clusters (subgroups), which comprised of seven household-level and one factory-level and one community-level cluster, with sizes ranging from 2 to 17 cases. For the nine clusters, the median incubation period was 17.0 days [Interquartile range (IQR): 8.4-24.0 days (d)], and the average interval between date of onset (report date) and diagnosis date was 1.9 d (IQR: 1.7 to 6.4 d). At the population level, the transmissibility of the virus was high in the early stage of the epidemic (Reff = 4.81). The transmissibility was higher in factory-level clusters (R0 = 16) than in community-level clusters (R0 = 3), and household-level clusters (R0 = 1). Conclusions: In Chaoyang District, the epidemiological features of SARS-CoV-2 showed multi-stage pattern. Many clusters were reported to occur indoors, mostly from households and factories, and few from the community. The risk of transmission varies by setting, with indoor settings being more severe than outdoor settings. Reported household clusters were the predominant type, but the population size of the different types of clusters limited transmission. The transmissibility of SARS-CoV-2 was different between a single population and its subgroups, with cluster-level transmissibility higher than population-level transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Basic Reproduction Number , China/epidemiology , Cities , Humans
7.
China CDC Wkly ; 3(50): 1071-1074, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1567031

ABSTRACT

INTRODUCTION: Vaccination booster shots are completely necessary for controlling breakthrough infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China. The study aims to estimate effectiveness of booster vaccines for high-risk populations (HRPs). METHODS: A vaccinated Susceptible-Exposed-Symptomatic-Asymptomatic-Recovered/Removed (SEIAR) model was developed to simulate scenarios of effective reproduction number (R eff ) from 4 to 6. Total number of infectious and asymptomatic cases were used to evaluated vaccination effectiveness. RESULTS: Our model showed that we could not prevent outbreaks when covering 80% of HRPs with booster unless R eff =4.0 or the booster vaccine had efficacy against infectivity and susceptibility of more than 90%. The results were consistent when the outcome index was confirmed cases or asymptomatic cases. CONCLUSIONS: An ideal coronavirus disease 2019 (COVID-19) booster vaccination strategy for HRPs would be expected to reach the initial goal to control the transmission of the Delta variant in China. Accordingly, the recommendation for the COVID-19 booster vaccine should be implemented in HRPs who are already vaccinated and could prevent transmission to other groups.

SELECTION OF CITATIONS
SEARCH DETAIL